Test di ipotesi sulla Media

Leonardo Bizzoni

May 11, 2024

Con Varianza nota 1

Sia X_1, \ldots, X_n un campione aleatorio con distribuzione normale $N(\mu, \sigma^2)$ con media μ incognitica e varianza σ^2 nota.

Test bilatero $H_0: \mu = \mu_0, H_1: \mu \neq \mu_0$

Sappiamo che la media campionaria è uno stimatore puntuale non distorto di μ .

La regione critica C sarà del tipo del tipo:

$$C = \{(x_1, \dots, x_n) \in \mathbb{R}^n : |\overline{x_n} - \mu_0| > c\}$$
 con c da trovare.

E la probabilità di errore di prima specie sarà:

$$P_{\mu_0}\left(\left|\overline{X_n}-\mu_0\right|>c\right)=\alpha$$
 α è noto ed indica il livello di significatività del test.

Procedendo analogamente alla costruzione di un intervallo di confidenza otteniamo che $P_{\mu_0}\left(|Z \sim N(0,1)| < \frac{c}{\frac{\sigma}{\sqrt{n}}}\right) = \alpha \rightarrow P_{\mu_0}\left(Z > \frac{c}{\frac{\sigma}{\sqrt{n}}}\right) = \alpha$ e che $c = z_{\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}}$. Tornando alla definizione della regione critica $C = \{(x_1', \dots, x_n) \in \mathbb{R}^n : |\overline{x_n} - \mu_0| > c)\}$ abbiamo che $|\overline{x_n} - \mu_0| > c \rightarrow \frac{|\overline{x_n} - \mu_0|}{\frac{\sigma}{\sqrt{n}}} > \frac{c}{\frac{\sigma}{\sqrt{n}}} \rightarrow \frac{|\overline{x_n} - \mu_0|}{\frac{\sigma}{\sqrt{n}}} > z_{\frac{\alpha}{2}}$ forma la zona critica $C = \left(\overline{x_n} - z_{\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}}, \overline{x_n} + z_{\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}},\right)$.

Ora che la zona critica C è definita possiamo stabilire se il test rifiuta H_0

(l'unico caso significativo). H_0 viene **rifiutato a livello** α se e solo se $\mu_0 \not\in$ $\left(\overline{x_n} - z_{\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}}, \ \overline{x_n} + z_{\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}},\right) \leftrightarrow (x_1, \dots, x_n) \in \left(\overline{x_n} - z_{\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}}, \ \overline{x_n} + z_{\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}},\right)$ (le 2 scritture sono equivalenti).