Automi a pila - Push Down Automata PDA

Leonardo Bizzoni

December 21, 2023

Un PDA è un ϵ -NFA con uno stack. Un PDA è una 7-upla $P = (Q, \Sigma, \Gamma, \delta, q_0, Z_0, F)$ dove:

- ullet Q è un insieme finito $(non\ vuoto)$ di stati.
- $\bullet~\Sigma$ l'alfabeto dei simboli di ingresso.
- Γ l'alfabeto dei simboli dello stack (non necessariamente correlati ai simboli in ingresso).
- $\delta: Q*(\Sigma \cup \{\epsilon\})*\Gamma \to 2^{Q*\Gamma^*}$ funzione di transizione tra stati.
- $q_0 \in Q$ stato iniziale.
- $Z_0 \in \Gamma \setminus \Sigma$ indica la fine dello stack (sotto questo simbolo nello stack non c'è nulla).
- $F \subseteq Q$ l'insieme degli stati accettanti.

1 Accettazione per stato finale L(P)

Sia P un PDA. Il linguaggio accettato da P per stato finale è $L(P) = \{w \in \Sigma^* \mid (q_0, w, Z_0) \vdash^* (q, \epsilon, \alpha)\}$ con $q \in F$ e $\alpha \in \Gamma^*$ qualsiasi.

2 Accettazione per stack vuoto N(P)

Sia P un PDA. Il linguaggio accettato da P per **stack vuoto** è $N(P) = \{w \in \Sigma^* \mid (q_0, w, Z_0) \vdash^* (q, \epsilon, \epsilon)\}$ con $q \in Q$ qualsiasi.