Chiusura rispetto operazioni tra linguaggi regolari

Leonardo Bizzoni

November 28, 2023

REG è la classe dei linguaggi regolari, ovvero i suoi elementi sono linguaggi regolari.

1 Unione

Se $L,M\in REG,$ allora $L\cup M\in REG$ anche se i 2 linguaggi hanno alfabeti diversi.

1.1 Dimostrazione versione 1

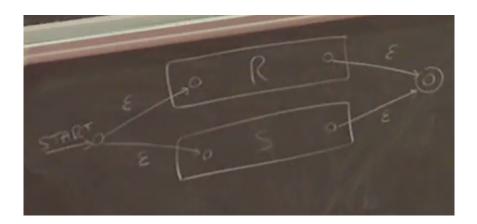
Se $L, M \in REG$, allora $\exists R, S$ espressioni regolari | L(R) = L e L(S) = M e quindi $L \cup M = L(R+S)$.

1.2 Dimostrazione versione 2

Se $L, M \in REG$, allora esistono 2 automi a stati finiti R, S tali che:

- \bullet R riconosce L
- \bullet S riconosce M

Allora esiste un ϵ -NFA che riconosce l'unione $L \cup M$.



2 Concatenazione

Se $L, M \in REG$, allora $L \circ M \in REG$.

3 Chisura di Kleene

Se $L \in REG$, allora $L^* \in REG$.

4 Complemento

Se $L \in REG$ su un alfabeto Σ $(L \subseteq \Sigma^*)$ allora anche $\overline{L} = \Sigma^* \setminus L$ è regolare.

4.1 Osservazione

 \overline{L} dipende dall'alfabeto Σ di L in quanto $\overline{L} = \Sigma^* \setminus L$. Se \overline{L} utilizzasse come alfabeto $\Gamma \supset \Sigma$ quindi $\overline{L} = \Gamma^* \setminus L$ contiene anche degli archi etichettati da simboli **non** presenti nel DFA per L.

4.1.1 Esempio

 $\Sigma = \{0,1\}$ $\Gamma = \{0,1,a\}$ allora:

- $\bullet \ L \subseteq \Sigma^* = L \subseteq \Gamma^*$
- $\bullet \ (\overline{L} = \Sigma^* \setminus L) \neq (\overline{L} = \Gamma^* \setminus L)$

4.2 Dimostrazione

Se $L \in REG$ allora esiste un DFA $A = (Q, \Sigma, \delta, q_0, F)$ tale che L = L(A). Allora $\overline{L} = L(B)$ dove B è il DFA $B = (Q, \Sigma, \delta, q_0, Q \setminus F)$ (diventano finali gli stati non finali)

5 Intersezione

Se $L, M \in REG$, allora $L \cap M \in REG$.

5.1 Dimostrazione versione 1

Per le leggi di De Morgan $L\cap M=\overline{\overline{L}\cup\overline{M}}$. Sappiamo che $\overline{L}\in REG,\overline{M}\in REG,\overline{L}\cup\overline{M}\in REG$ allora anche $\overline{\overline{L}}\cup\overline{\overline{M}}$ è regolare quindi l'intersezione è regolare.

5.2 Dimostrazione versione 2

Consideriamo un DFA $A_L = (Q_L, \Sigma, \delta_L, q_L, F_L)$ che accetta il linguaggio L ed un DFA $A_M = (Q_M, \Sigma, \delta_M, q_M, F_M)$ che accetta il linguaggio M. Costruiamo l'automa **prodotto** $A = A_L \otimes A_M = (Q_L \times Q_M, \Sigma, \delta, (q_L, q_M), F_L \times F_M)$ dove $\delta((p, q), a) = (\delta_L(p, a), \delta_M(q, a))$.

L'automa prodotto accetta una stringa $w \in \Sigma^*$ sse sia A_L che A_M accettano la stringa e accetta stringa appartenenti all'intersezione dei linguaggi.

6 Differenza insiemistica

Se $L, M \in REG$, allora $L \setminus M \in REG$.

6.1 Dimostrazione

Vale $L \setminus M = L \cap \overline{M}$. Poichè $M \in REG$, anche $\overline{M} \in REG$ allora anche l'intersezione è regolare.