Operazioni su insiemi

leo

December 21, 2022

1 Unione

L'unione di 2 insiemi S,T è l'insiemi di tutti gli oggetti che sono elementi di S o di T.

$$S \cup T = \{x | x \in S \lor x \in T\}$$

1.1 Proprietà

• idempotenza: $S \cup S = S$

• commutativa: $S \cup T = T \cup S$

• elemento neutro: $S \cup \emptyset = \emptyset \cup S = S$

• assorbimento: $S \cup T = T$ sse $S \subseteq T$

• associativa: $(S \cup T) \cup X = S \cup (T \cup X)$

• monotonia:

 $-S\subseteq (S\cup T)$

 $-T\subseteq (S\cup T)$

2 Intersezione

L'intersezione di 2 insiemi S,T è l'insieme di tutti gli oggetti che sono elementi di entrambi gli insiemi S e T.

$$S\cap T=\{x|x\in S\wedge x\in T\}$$

2.1 Proprietà

- \bullet idempotenza: $S\cap S=S$
- commutativa: $S \cap T = T \cap S$
- annichilazione: $S \cap \emptyset = \emptyset \cap S = \emptyset$
- assorbimento: $S \cap T = T$ sse $T \subseteq S$
- associativa: $(S \cap T) \cap X = S \cap (T \cap X)$
- monotonia:
 - $-(S\cap T)\subseteq S$
 - $-(S\cap T)\subseteq T$

3 Complemento

Dato un insieme universo U. La differenza di un sottoinsieme $S \in U$ rispetto U si chiama complemento di S in U.

$$\overline{S} = \{x | x \in U \land x \notin S\}$$

3.1 Proprietà

- $\bullet \ \overline{U} = \emptyset$
- $\bullet \ \overline{\emptyset} = U$
- $\bullet \ \ \overline{\overline{\overline{S}}} = S$
- Legge di De Morgan per $\cup : \ \overline{(S_1 \cup S_2)} = \overline{S_1} \cap \overline{S_2}$
- Legge di De Morgan per \cap : $\overline{(S_1 \cap S_2)} = \overline{S_1} \cup \overline{S_2}$
- $S \cap \overline{S} = \emptyset$
- $S \cup \overline{S} = U$
- $S_1 = S_2$ sse $\overline{S_1} = \overline{S_2}$
- $S_1 \subseteq S_2$ sse $\overline{S_2} \subseteq \overline{S_1}$

4 Differenza

La differenza di 2 insiemi X,Y è l'insieme di tutti gli oggetti di X che non appartengono ad Y.

$$X \setminus Y = \{x | x \in X \land x \not\in Y\}$$

4.1 Proprietà

- $\bullet \ \ X \setminus Y = \emptyset$
- $\bullet \ \ X \setminus \emptyset = X$
- $\bullet \ \emptyset \setminus X = \emptyset$
- $(S1 \setminus S_2) \setminus S_3 = (S_1 \setminus S_3) \setminus S_2 = S_1 \setminus (S_2 \cup S_3)$
- $X \setminus Y \neq Y \setminus X$
- $S_1 \setminus S_2 = S_1 \cap \overline{S}_2$

5 Differenza simmetrica

La differenza simmetrica di 2 insiemi S_1, S_2 è definita come:

$$S_1 \Delta S_2 = (S_1 \setminus S_2) \cup (S_2 \setminus S_1)$$

5.1 Proprietà

- $S\Delta S = \emptyset$
- $S\Delta\emptyset = S$
- $\bullet \ S_1 \Delta S_2 = S_2 \Delta S_1$
- $S1\Delta S_2 = (S_1 \cap \overline{S}_2) \cup (S_2 \cap \overline{S}_1)$
- $S1\Delta S_2 = (S_1 \cup S_2) \setminus (S_2 \cap S_1)$

6 Proprietà distributiva

L'unione e l'intersezione distribuiscono una sull'altra:

- $\bullet \ A\cap (B\cup C)=(A\cap B)\cup (A\cap C)$
- $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$