## Elementi estremali

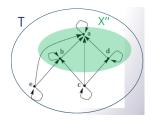
leo

December 26, 2022

Gli elementi estremali di un poset sono:

#### 1 Minimo

In un poset  $(S, \leq)$ , un elemento  $s \in S$  è <u>minimale</u> se  $\nexists s' \in S, s' \neq s | \langle s', s \rangle \in R$ . Se il minimale è unico allora prende il nome di <u>minimo</u> del poset e viene denotato da 0. Nessun elemento lo precede | no archi entranti cappi esclusi


### 2 Massimo

In un poset  $(S, \leq)$ , un elemento  $s \in S$  è <u>massimale</u> se:  $\nexists s' \in S, s' \neq s | \langle s, s' \rangle \in R$ . Se il massimale è unico allora prende il nome di <u>massimo</u> del poset e viene denotato da <u>1</u> Nessun elemento lo succede | no archi uscenti cappi esclusi

### 3 Minoranti

Dato un poset  $(S, \leq)$ , un sottoinsieme  $X \subseteq S$ , un elemento  $s \in S$  è:

- minorante di X sse:  $\forall s' \in X, \exists \langle s, s' \rangle \in R$ 
  - -s ha archi uscenti verso | è in relazione con  ${\it tutti}$ gli elementi di  ${\it X}$
- massimo minorante di X ( $\sqcap X$ ) sse:  $\forall s' \in \text{minoranti } \exists \langle s', s \rangle \in R$ 
  - -s ha archi entranti da  ${\it tutti}$ i minoranti di X / il più grande dei minoranti



 $X = \{a, b, d\}$  ha un minorante: c, ha un massimo minorante: c, e non è un minorante in quanto non è confrontabile con d, b, d non sono minoranti in quanto non sono confrontabili.

# 4 Maggioranti

Dato un poset  $(S, \leq)$  e un sottoinsieme  $X \subseteq S$ , un elemento  $s \in S$  è:

- maggiorante di X sse:  $\forall s' \in X, \exists \langle s', s \rangle \in R$ 
  - -s ha archi entranti da | ha una relazione con  ${\it tutti}$ gli elementi di X
- minimo maggiorante di X ( $\sqcup X$ ) sse:  $\forall s' \in \text{maggioranti } \exists \langle s, s' \rangle$ 
  - s ha archi uscenti verso tutti i maggioranti | il più piccolo dei maggioranti

Ogni  $X\subseteq S$  ha al più un massimo minorante e un minimo maggiorante. Se ogni  $X\subseteq S$  ha minimo, allora l'insieme si dice ben ordinato.