Teorema sul limite della funzione composta

leo

January 4, 2023

Siano $f: D \subseteq \mathbb{R} \to \mathbb{R}, g: D' \subseteq \mathbb{R} \to \mathbb{R}$ tali che $f(D) \subseteq D'$. Sia inoltre $x_0 \in D$ di accomulazione. Se f è continua in x_0 e g è continua in $f(x_0)$, allora: g(f(x)) è continua in x_0 .

1 Esempio 1 - nozione di asintotico

 $\lim_{x\to\pm\infty}e^{\frac{1}{x}},\,\text{per }x\to\pm\infty\text{ si ha che }\frac{1}{x}\to0^\pm\text{ e quindi}\lim_{x\to\pm\infty}e^{0^\pm}=1.$

La funzione $e^{\frac{1}{x}}$ è quindi asintotica per $x \to \pm \infty$ alla retta y = 1.

2 Esempio 2

 $\lim_{x\to 0}e^{\frac{1}{x}}, \text{ per } x\to 0^{\pm} \text{ si ha che } \frac{1}{x}\to \begin{cases} +\infty\\ 0^{+} \end{cases} \quad \text{e quindi} \lim_{x\to 0}e^{\frac{1}{x}} \text{ non ha limite}.$