Operazioni su sottospazi vettoriali - Grassmann

Leonardo Bizzoni

May 4, 2023

Sia V uno spazio vettoriale di dimensione finita e W,Z < V sottospazi vettoriali di V, allora:

- $W \cap Z < V$
- $W+Z=\{w+z|w\in W\ {\rm e}\ z\in Z\}$ è il più piccolo sottospazio vettoriale di V che contiene $W\cup Z$

1 Teorema di Grassman

Siano V, W 2 spazi vettoriali e sia $f: V \to W$ una funzione lineare. $\dim(V) = \dim(f(V)) + \dim(N(f))$, dove N(f) è il nucleo di f.

1.1 Corollario 1

Sia V uno spazio vettoriale di dimensione finita e W, Z < V sottospazi vettoriali di V, allora $\dim(W+Z) = \dim(W) + \dim(Z) - \dim(W \cap Z)$.

1.2 Corollario 2

Sia $\dim(W)=\dim(V)\in\mathbb{N}, f:V\to W$ allora: f è iniettiva $\leftrightarrow f$ è suriettiva $\leftrightarrow f$ è biettiva.

1.3 Nucleo di una funzione

Siano V, W 2 spazi vettoriali e sia $f: V \to W$ una funzione lineare. $f^{-1}(0_W)$ è detto **nucleo** di f.